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Abstract 

The growing body of knowledge on modeling land use systems points to epistemic uncertainty as 

one of the challenging obstacles in development and application of agent-based models (ABM). 

To decrease outcome uncertainty, sensitivity analysis (SA) is performed as part of model 

verification and validation. Oftentimes, however, it is inadequately addressed, partly due to the 

lack of tools and techniques that focus on an explicit evaluation of ABM dynamics. The 

nonlinear processes, inherent in such models, necessitate longitudinal SA with time path 

investigation of input-output relationships of endogenous variables. In response to the outlined 

deficiencies, the reported study investigates the potential of time dependent global sensitivity 

analysis (time-GSA) in examining the dynamics of outcome uncertainty of a simple ABM of 

land use change. Specifically, we apply first and total order sensitivity indices to decompose 

variance of output landscape fragmentation, apportioned to model inputs for multiple time steps 

and multiple realizations of the ABM. We focus the analysis on selected complex systems 

characteristics including preference uncertainty, path dependence, access to information, and 

magnitude of interactions and feedbacks. We conclude that the factor sensitivity measures vary 

significantly during model execution. Consequently, a static snapshot of ABM sensitivity, taken 

at the end of the simulation, is inadequate when deciding on factor prioritization and reduction. 

Assuming that ABM dynamics is a result of factor interaction, we observe a distinct time lag of 

nonlinearity, which unfolds after the formation of the seeds of development. Therefore, we argue 

for further application of time-GSA in ABM as one of the visual quantitative techniques 

contributing to evaluation of ABM nonlinearity. 
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1 Introduction 

The complexity of land use systems (LUS) originates from interplay of many elements and 

elemental drivers (Claessens et al., 2009) that form a network of reciprocal relationships 

resulting in nonlinearities, path dependence, and feedbacks across scale, time, and space (Parker 

et al., 2008, Verburg, 2006, Liu et al., 2007, Bennett and McGinnis, 2008). LUS complexity 

imposes a number of challenges to long term policy making and spatial knowledge discovery. At 

the same time we recognize the pressing issues of unsustainable growth, which is a consequence 

of poorly managed land. To address these challenges, we often employ agent based models 

(ABMs), in which LUS actors like humans, organizations and institutions are modeled using 

individual entities that interact with each other and change their common land use through direct 

and indirect impact (Bousquet and Le Page, 2004, Matthews et al., 2007, Parker et al., 2003). 

ABMs are inevitably prone to epistemic sources of uncertainty reflecting our poor 

knowledge of the processes and data describing the system (Helton and Burmaster, 1996, Saltelli 

et al., 1999).  This uncertainty imposes one of the major obstacles in developing fully functional 

models. As Verburg (2006) and others point out, feedbacks in land use change systems cause 

strong model dependence on initial conditions, which calls for novel techniques of sensitivity 

analysis (SA), tailored to exploration of many possible land use trajectories (Brown et al., 2005, 

Manson, 2001, Oreskes et al., 1994).  

The application of SA to ABM verification and validation is not new (Castella et al., 

2005, An et al., 2005, Brown et al., 2008, Brown and Robinson, 2006, Li and Liu, 2007, Burke et 

al., 2006, Becu et al., 2003, Mosler and Martens, 2008, Schluter and Pahl-Wostl, 2007, Topping 

et al., 2010). Oftentimes, however, it is inadequately addressed, partly due to the lack of tools 

and techniques that focus on an explicit evaluation of ABM dynamics (Parker et al., 2003, 
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Richiardi et al., 2006). Apart from explaining empirical regularities, complex systems models 

should allow for identifying the most important mechanisms of change that are hard to observe 

in the field (Verburg et al., 2006, Brugnach, 2005, Brugnach et al., 2008, Irwin et al., 2009). 

Consequently, the nonlinear processes, inherent in LUS models, necessitate longitudinal SA with 

time path investigation of input-output relationships of endogenous variables (Parker et al., 

2003).  

In response to the outlined deficiencies in SA as practiced in land use ABMs, we propose 

to use time dependent global sensitivity analysis (time-GSA), in the form of time series of 

sensitivity indices. Our approach borrows from research on GSA undertaken by Saltelli and 

colleagues (Saltelli et al., 2000, Lilburne and Tarantola, 2009, Gomez-Delgado and Tarantola, 

2006, Crosetto and Tarantola, 2001, Saltelli et al., 1999). Traditionally, SA has been performed 

by evaluating the changes in final model results due to input perturbations. Contrary to this 

common approach, time-GSA opens possibilities to address a new kind of questions: What are 

the dynamics of model sensitivity to input factor variability? To what extent does the model 

behave nonlinearly? Are there any regions in the time series of sensitivities where a particular 

input variable dominates the others? Which input parameters contribute towards model stability? 

What combinations of thresholds make the model switch from one regime to another? As a 

consequence, the major advantage of time-GSA, as presented in this study, is the possibility of 

examining parameter sensitivity throughout model execution as opposed to ‘final time step’ 

testing.  

In the following sections, we report on variance-based time-GSA of a simple agent-based 

model of residential land use. We focus the analysis on selected complex systems characteristics 

including: [a] preference variability related to three landscape attributes, [b] spatial path 
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dependence (Brown et al., 2005, Manson, 2001), [c] magnitude of interactions defined by agent 

population size, [d] access to information, represented by the size of the sample of developable 

locations known to agents, and [e] the magnitude of agent-environment feedbacks.  

The remainder of the manuscript is structured as follows. Section two summarizes the 

foundations of variance-based GSA. Section three outlines the ABM model used in this study. 

What follows is a description of spatial datasets and experiments designed to compare and 

contrast the impact of input perturbations on the dynamics of the generated land use pattern. In 

the final sections we summarize the results of time-GSA and conclude the paper by discussing 

future research challenges. 

2 Variance-based global sensitivity analysis 

Global sensitivity analysis studies the variability of model outputs due to a broad range of 

simultaneous perturbations in the whole set of uncertain input factors, which are examined 

independently and in combinations (Campolongo et al., 2000). GSA derives from numerical 

predictive modeling and experimental science and has been used in conjunction with equation-

based models in the aspatial context (Saisana et al., 2005, Saltelli et al., 2000, Varella et al., 

2010, Ziehn and Tomlin, 2009) as well as GIS-based applications (Lilburne and Tarantola, 2009, 

Crosetto et al., 2000, Gomez-Delgado and Tarantola, 2006, Tarantola et al., 2002).  

Various GSA approaches have been proposed and evaluated (Campolongo et al., 2000). 

Here we utilize variance-based GSA, which obviates the assumptions of linearity inherent in 

regression-based approaches that are ill-suited for dynamic complex system modeling (Manson, 

2007). Variance-based GSA decomposes the variance (V) of model output apportioned to 

changes in k model inputs that are represented singly (Vi), and in combinations with an 

increasing level of dimensionality (Saisana et al., 2005, Gomez-Delgado and Tarantola, 2006): 
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For example, Vij represents the sensitivity of model output Y to the interaction between 

inputs Xi and Xj, Vijm is the share in the overall sensitivity of the model explained by the 

interaction among Xi, Xj, and Xm, and so forth. Such defined variance is further used to calculate 

first order (Si) and total-effect (STi) indices for every input parameter i (where i=1 to k): 
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Si quantifies a fractional contribution of an uncertain factor i to V taken independently 

from the other k-1 factors. STi is used to find the overall contribution of a given input i including 

its interaction with other inputs (Homma and Saltelli, 1996). [ ( | )]
i iX X iV E Y X

  stands for the total 

contribution of conditional variance of Y due to all non-i inputs so that STi includes first order 

and higher order terms that involve factor i (Saisana et al., 2005). 

To calculate Si and STi we will use extended Sobol estimation procedure described in 

Saltelli (2002) and Lilburne and Tarantola (2009), which is available in SimLab 

(http://simlab.jrc.ec.europa.eu/). Since we focus on time variant GSA, we will compute 

normalized Si and STi for every time step of model execution, effectively creating a time series 

of output variance sensitivity. The interpretation of the pairs of indices (Si, STi) is summarized 

in Table 1. 

 

[Insert Table 1 about here] 

 

 

http://simlab.jrc.ec.europa.eu/
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2.1 Experimental procedure 

To explore the land use ABM with time-GSA based on Sobol experimental design, the following 

steps are performed for any given computational experiment (Saisana et al., 2005, Lilburne and 

Tarantola, 2009): 

1) Randomly generate n Monte Carlo (MC) input samples based on predefined probability 

density (or mass) functions using a quasi-random design 

2) Execute the model n times for t time steps 

3) Calculate fragmentation statistics of output land use patterns 

4) Select a non-correlated subset of fragmentation statistics 

5) Use the selected fragmentation statistics together with the input samples to calculate time 

series of Si and STi 

 

Note that we will analyze the dynamics of pattern formation using aggregate measures in the 

form of landscape pattern metrics. 

3 Agent-based model of residential land use change 

The ABM presented in this research (Figure 1) is a simplified implementation of a real estate 

development process as outlined in Barrett and Blair (1988), focusing on site suitability 

assessment and investment decisions. The ABM is a discrete time stochastic model of 

decentralized decision making, composed of a cellular space (landscape), and developer agents, 

who are the major driving force of land use change. Three landscape attribute maps are utilized 

in agent decision process: land value representing the economic characteristics of the local 

property market, scenic (natural) beauty symbolizing the natural amenities of the area under 

consideration, and accessibility to already developed locations measured as Euclidean distance 

(Brown et al., 2005, Ligmann-Zielinska, 2009). The agents are equipped with preferences for the 

three landscape attributes. They make their decisions using an ideal point aggregation function 

(outlined below), followed by ordered choice heuristics (Benenson and Torrens 2004). In case of 

conflict over a piece of land, a simple rank-based bidding is employed to assign the parcel to one 

of the competing agents. 
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[Insert Figure 1 about here] 

 

3.1 Agent decision process 

Each agent enters the landscape at the beginning of the simulation, draws a sample of 

developable locations, and evaluates them using an ideal point (IP) decision rule (Hwang and 

Yoon, 1981, Malczewski, 1999): 

1) For every standardized landscape attribute map, an agent finds the best and the worst 

values within the lattice, which are respectively called an ideal and a nadir.  

2) The agent calculates gains and losses for the attributes: 
^_ xy xyA gain A A 

 
*_ xy xyA loss A A 
 

Where 

A_gainxy is a gain for attribute A at location xy  

A
^
 is the nadir within the whole attribute A layer  

A_lossxy is a loss for attribute A at location xy  

A
*
 is the ideal within the whole attribute A layer 

Axy is the value of attribute A at location xy 

3) The agent calculates the separations from ideals and nadirs: 
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Where 

wdA is developer agent’s d preference (weight) for attribute A 
*

dxyS is the separation from ideal for agent d at location xy 

^

dxyS is the separation from nadir for agent d at location xy 

4) Finally, agent d calculates the utility  dxyU  of location xy: 

^

^ *

dxy

dxy

dxy dxy

S
U

S S



 

(4) 

 

Applying IP for site utility calculation allows for an explicit representation of reference 

frames (ideals and nadirs) in decision making, which is consistent with the theory of choice 

psychology (Tversky and Kahneman, 1981). The IP decision rule belongs to the category of 
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multi-attribute utility techniques and, unlike weighted linear combination, does not require the 

evaluation attributes to be independent. 

Based on the utilities, the agent compiles an investment set by ordering the sampled sites 

from the best one to the worst one. Starting from the highest scoring site, the agent picks the 

desired (demanded) number of sites and creates a pending investment plan. When a site is 

selected by more than one developer agent, a rank-based bidding rule is invoked, in which the 

site of conflict is assigned to an agent who ranked the site the highest. When this is the case, the 

other competing agents lose the site from their investment plans. To compensate for their 

missing demands, these agents revisit their investment sets and choose additional sites to update 

their investment plans. This process continues until all conflicts are resolved and all demand is 

allocated to sites, which are then converted to developed land. 

 

3.2 Agent-environment feedback 

Agents’ decisions cause a number of reciprocal changes in the environment (Verburg, 2006). 

The ABM presented in this study emulates such feedback using a CA-based approach (Manson, 

2001). First and foremost, the land use undergoes change due to the conversion of an 

undeveloped area to a developed one. Moreover, two decision attributes, namely, land value and 

scenic beauty, are updated as a result of property development. Specifically, the development has 

a positive impact on land value and a negative impact on scenic beauty. The explicit feedbacks 

are represented as a ratio of change in the nearest neighborhood of every developed cell. 

The land value is increased using the following formula: 

( 1) ( ) * ;n n lv p pV t V t I V n N      (5) 

 

Where V is the land value attribute, p is a developed parcel, and n is the neighboring cell 

of p. Therefore, with every time step passed, every n, located in the neighborhood of p, increases 
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its land value by a fraction Ilv of p’s land value. In this study, we assume that Np is a 3x3 Moore 

neighborhood, and Ilv is in the range [0.0, 1.0]. If the updated land value exceeds 1.0, we set it to 

1.0, which is the maximum possible score for all of the standardized attribute maps. Increasing Ilv 

enhances the positive effect that the development has on the land value of adjacent locations. 

Observe that the new value is directly influenced by the development. Moreover, for n with more 

than one adjacent p, its land value increases by Ilv of each adjacent p, symbolizing a cumulative 

effect of neighborhood development. 

Similarly to land value, scenic beauty is also updated within the neighborhood of s: 

 

( 1) ( ) * ;n n sb p pB t B t D B n N      (6) 

 

Where B is the scenic beauty attribute. Therefore, with every time step passed, every n, 

located in the neighborhood of p, decreases its scenic beauty score by a fraction Dsb of p’s scenic 

beauty. We assume that Dsb is in the range [0.0, 1.0]. If the updated scenic beauty falls below 0.0, 

we set it to 0.0, which is the minimum possible score for all of the standardized layers of this 

model. Obviously, increasing Dsb intensifies the negative impact of development on scenic 

beauty of adjacent locations. Every n with more than one adjacent p decreases its beauty by a 

fraction Dsb of each bordering p, symbolizing a cumulative effect of the whole neighboring 

development. 

We assume for simplicity that the feedback coefficients are constant over time. In reality, 

it would be more appropriate to introduce attenuating feedbacks, represented as exponential 

decay functions, in which Ilv and Dsb decrease with time that passed since the development took 

place.  
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4 Landscape and input parameter values 

The purpose of this study is to illustrate the utility of time-GSA using eleven computational 

experiments. To gain full control over experimentation, we employ a highly stylized 

environment composed of 14641 cells (121*121) and initialized with two landscape attribute 

maps depicted in Figure 2.  

 

[Insert Figure 2 about here] 

 

 

Preferred locations are represented by darker shades. Consequently, the land value layer 

scores highest in the center of the map, whereas the scenic beauty is composed of hot spot and 

cold spot value clusters. To reduce exogenous path dependence, the input land use map is set to 

undeveloped for every cell in the lattice. The model is executed for 70 time steps, which is a 

compromise between the computational cost of simulations and the minimal length of model 

execution that provides a representative time series of land use dynamics. Finally, the ABM 

generates constant development of 40 cells per time step, which amounts to 2800 developed cells 

(19.12%) at the end of model execution. 

 

4.1 Input factor probability distributions  

Our major objective is to assess land use pattern sensitivity due to input parameter 

variation and sample size variation (Richiardi et al., 2006). In all experiments, also referred to as 

scenarios, we use seven independent input factors (k=7): number of developer agents (Anum), 

preference (weight) for land value (Wlv), preference for scenic beauty (Wsb), preference for 

accessibility (Wa), the fraction of developable land known to agents – sample size (Ss), 

neighborhood decrease in scenic beauty (Dsb), and neighborhood increase in land value (Ilv). 

Table 2 lists the probability density functions (PDFs) reflecting the variable input factors for 
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every scenario. It should be stressed that the PDFs are critical to defining model behavior, since 

the variances introduced into the PDFs reflect the magnitudes of variability associated with a 

particular input. 

 

[Insert Table 2 about here] 

 

 

We start from establishing a base case scenario, which represents a point of departure for 

the consecutive experiments. For all continuous factors we assume a normal distribution. In the 

majority of cases, we set the standard deviation of a factor to half of the mean value to impose a 

moderate fluctuation around the mean. Below we describe the PDFs in more detail. 

The base-case preference allocation for landscape attributes is set to a third of unity and 

reflects equal preferences for all three characteristics. When one preference dominates the others, 

we increase the average value of the weight leaving the standard deviation unchanged. 

Preliminary experimentation with Dsb and Ilv showed that these two factors can have a huge 

impact on model behavior. In particular, when Dsb > 0.1 or Ilv > 0.1 the model immediately 

converges to equilibrium calculated as landscape pattern metrics. Therefore, in the consecutive 

experiments, we established 0.1 as the boundary condition for the normal PDFs of Dsb and Ilv. 

Population size (number of agents) is defined using the discrete non-uniform distribution 

presented in Table 2. The following constant is assumed for every time step: 

Anum*demand_per_agent = 40. In other words, when the number of agents increases, the demand 

for land per agent proportionally decreases, so that the developed area per time step remains 

constant. Furthermore, we assume that, for a particular ABM execution, all agents are 

homogeneous in preferences. Thus the variability of preferences is studied among alternate 

development histories (model runs) rather than among agents. While we acknowledge that such 
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an assumption is a considerable simplification of a real land use system, we needed to reduce 

model dimensionality in order to trace the causality of the patterning.  

To determine the necessary number of MC runs for the Sobol sample input generation 

procedure, we use the following formula (SimLab http://simlab.jrc.ec.europa.eu/): (2k + 2)*2
(4+j)

, 

where j>=0 (Sobol, 2001). Due to the fact that our model is computationally demanding, taking 

over 10 min on Dell Precision T5400 Intel Xeon 3.16GHz processor, we decided to set j = 1, 

which amounts to 512 ABM executions per scenario.  

The following operational questions were used as the basis for experimental design 

(Table 2):  

Experiments 2 and 3: What is the impact of variable preferences for landscape 

characteristics on outcome development pattern? 

Experiments 4 and 5: What are the implications of agent-agent feedbacks on land use 

clustering?  

Experiments 6 and 7: How does an increase (decrease) in agent-landscape feedback 

intensity influence the spatial outcome? Will the changes in feedback intensity result in a gradual 

modification of the pattern or will they cause an abrupt change? 

Experiments 8 and 9: Assuming a constant amount of development, to what extent does 

the number of homogeneous agents influence output variability? 

Experiments 10 and 11: How does agent’s access to opportunities (information) shape 

land use morphology? 

Observe that we not only compare the distribution of outcome patterns, referred to as 

uncertainty analysis (UA), but we also analyze the influence of input factors on output variance. 

http://simlab.jrc.ec.europa.eu/
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Through time-GSA we try to infer which factors play the major role in obtaining a particular 

output distribution.  

5 Experiments and results 

The primary results of ABM simulations are binary land use maps of developed and undeveloped 

locations for every time step of each model execution. Figure 3 shows selected development 

frequency maps, calculated using the mean development per cell among all model executions of 

a given experiment. Observe a considerable variability in the spatial distribution of land 

development among scenarios.  

[Insert Figure 3 about here] 

 

 

Using two-dimensional array of output values, where each cell in the landscape is a separate 

outcome variable, may be computationally intractable (Lilburne and Tarantola, 2009). Therefore, 

in place of spatial layers, we use fragmentation statistics as the representative summaries of 

patterns.  

 

5.1 Selecting fragmentation statistics for time-GSA analysis 

To summarize the patterns, we calculated the following fragmentation statistics (McGarigal and 

Marks, 1995): Largest Patch Index (LPI), Patch Density (PD), Edge Density (ED), Euclidean 

Nearest Neighbor Distance (ENN), and Aggregation Index (AI). From the computed spatial 

measures, ENN was dropped from post-processing analysis due to null values for some maps, in 

which the development clustered into one big patch (hence no neighbors). From the remaining 

statistics, we selected AI, PD, and LPI based on the linear correlation coefficient (0.1<|r|<0.8 for 

all pairs of the selected statistics). LPI is measured as the percentage of the landscape occupied 

by the largest patch of developed land, and is therefore dependent on the absolute area of 
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development in any given time step. Therefore, we further normalized the LPI values so that they 

reflect the fraction of the developed area occupied by the largest patch, rather than the fraction of 

the total area under investigation. In this respect, we obtained a measure of clustering relative to 

the current development, and diminished the impact of linear constant growth. We call this 

measure Largest Patch of Developed area Index (LPDI).  

 

5.2 Sensitivity estimation errors 

The accuracy of Si and STi depends on the number of model executions (Crosetto and Tarantola, 

2001). Values of indices below zero usually indicate approximation errors due to a small MC 

sample. When these errors are minor (e.g. 10-15%) we can assume that the factors they represent 

are unimportant and their Si or STi can be reset to zero (Saltelli et al., 2008). Table 3 summarizes 

the highest errors obtained from k input factors for all eleven experiments. The errors were 

measured as values of Si or STi that fall below zero, normalized to 100%. Notice that, for 

experiments 2 and 7, the fragmentation statistics considerably exceed the 15% threshold. We 

consequently decided to repeat these two experiments using a larger MC sample of 1024 runs. 

These extended simulations improved Si and STi values for AI and LPDI. The PD statistics, 

however, maintained low accuracy (Table 3). To confirm that sensitivity estimation errors can 

noticeably affect the quality of time-GSA results, we compared the time series of normalized Si 

values for PD calculated for experiment 7 (Figure 4). Observe that both plots differ in the 

relative importance of factors over time. Therefore we decided to exclude PD from further 

analysis.  

 

[Insert Table 3 about here] 
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[Insert Figure 4 about here] 

 

5.3 Uncertainty plots of land use fragmentation statistics  

To establish output PDFs, we summarized AI and LPDI using (, 1σ) pairs for every time step of 

model execution, rendered as time series of output uncertainty (Figure 5). 

 

[Insert Figure 5 about here] 

 

 

The AI statistic demonstrates a fairly consistent behavior with a general trend of a short-

time change in value (increase or drop, depending on experiment), followed by a long-time 

period of relative stability with  > 40%. Not surprisingly, the highest AI correlates with high 

importance assigned to land value either directly (Wlv, experiment 2) or indirectly (high Ilv and 

low Dsb, experiment 7). In both cases the average AI scores are high due to the concentric spatial 

distribution of this layer (Figure 2) which has a tendency to build one big cluster. Observe that 

high Ilv and low Dsb (experiment 7) result in the lowest variance of AI (smallest σ) suggesting 

that this configuration of feedbacks ensures a high level of aggregation every time. 

The behavior of LPDI differs from AI. First of all, it is much more variable with its 1σ-

band of ~30% as opposed to AI where 1σ-band = 20% or less. Secondly, the time of convergence 

to equilibrium for LPDI is longer than for AI. For example, experiments 1 and 2 exhibit the 

convergence period of ~30 time steps for LPDI and ~10 for AI. The Natural Beauty Weight 

experiment (3) is the least variable. Its 1σ-band is the narrowest owing to the overwhelming 

impact of the polycentric nature of the natural beauty layer (Figure 2). 

Moreover, all but one experiments exhibit an interesting behavior related to the relative 

size of the largest developed patch. After 3-5 time steps the model reaches the maximum LPDI 
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value, then drops and maintains an almost steady value throughout the rest of the simulation. For 

instance, in experiment 11 LPDI starts around ~50%, then quickly goes up to ~60% and, after 

t=4, falls and stabilizes around 40%. 

Finally, we should point to experiments 2, 3, and 7 that exhibit distinct LPDI time series. 

Both the Land Value Weight experiment and the Natural Beauty Weight experiment are directly 

dependent on the preference assigned to their respective attribute maps, with high LPDI for the 

concentric land value layer and low LPDI for the dispersed and polycentric clumps of high 

scenic beauty. Similarly to AI, experiment 7 demonstrates higher LPDI values due to the 

dominating impact of Ilv relative to Dsb, which strengthens the influence of the land value layer 

on the resulting development.  

 

5.4 Significance of different input uncertainties on landscape fragmentation 

To test the significance of different conceptions of input factor PDFs, we performed one-way 

analysis of variance for AI and LPDI among all experiments for selected time steps (one, three, 

five, ten and every 10
th

 afterwards). Table 4 shows selected ANOVA results for t=3, t=20, and 

t=70.  

[Insert Table 4 about here] 

 

For LPDI, the p-values are less than .0001 in both cases, indicating significant differences 

among the experiments. Moreover, based on the time series of differences (Figure 6), the largest 

difference at each tick decreases rapidly from over 25% at t=1 to ~17% at t=3, followed by an 

increase to 30% at step 20 and then a slight decline. After step 5 however, its variation is small. 

We can therefore conclude that after the initial short period of time, the largest difference of AI 

for all eleven experiments becomes stable. 
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[Insert Figure 6 about here] 

 

 

Similarly to AI, LPDI p-values score less than .0001 in ANOVA, suggesting a significant 

impact of various PDF definitions of input factors on the relative size of the largest patch of 

developed area (Table 4). More importantly, based on the time series in Figure 6, the largest 

difference at each time step has an increasing trend with the peak at the end of the simulation. In 

summary, Figure 6 confirms the distinctive character of time step 30 as a point of gradual regime 

change, after which most of the experiments converge to equilibrium (Figure 5). 

 

5.5 Time dependent global sensitivity analysis 

Figures 7 and 8 illustrate the time-GSA plots with sensitivity indices rendered cumulatively.  

Below we present the major observations of the dynamics of variance decomposition (refer to 

Table 1 for guidance). 

 

[Insert Figure 7 about here] 

 

 

[Insert Figure 8 about here] 

 

 

With high Si we look for the important input factors that, if fixed independently, would 

substantially reduce the variance of AI and LPDI. The plots suggest a considerable variability in 

Si among scenarios, which is quite surprising given the relatively stable uncertainty plots in 

Figure 5. In the vast majority of cases preference for scenic beauty (Wsb) is the most influential 

input factor for both fragmentation statistics, followed by Wlv and Dsb. The significance of Wsb on 

AI and LPDI is not surprising given the fact that the natural beauty layer drives the magnitude of 
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patchiness in the area. In experiments 7, 2, 3, and 5, SS becomes a moderately influential factor, 

especially at the beginning of the simulation. These four factors constitute the leverage points of 

clustered landscape configuration. The role of the other factors in fragmentation statistics 

variability is almost negligible, especially given the small values of STi.  

Similarly to the uncertainty plots in Figure 5, scenarios 2, 3, and 7 diverge the most from 

the base case for both Si and STi of AI. Consider the most influential factors for experiment 7 

and 3. Clearly, in the former experiment, SS is the factor that, taken singly, causes the majority of 

AI variance, as opposed to Dsb in experiment 3. By investigating STi, we can observe that Dsb 

and SS are still the most sensitive factors for these experiments, suggesting strong non-linear 

relationships between these variables (Table 1). 

 Using the sum of first-order sensitivity indices, we can assess to what extent the ABM 

behaves in an additive manner. The portion of output variance that cannot be explained by 

individual factors is drawn in white in Figures 7a and 8a. The width of this band reflects the 

fraction of interactions that affect output variance. Interestingly, factors interactivity differs 

between AI and LPDI, indicating that we should be cautious in selecting spatial metrics, since 

one fragmentation statistic is not enough to thoroughly describe pattern dynamics.  

Given the PDFs used in the experiments, the ABM is more additive than expected and the 

interactions among its parameters are not substantial. For AI, the sum of first-order effects 

exceeds 70% for most of the scenarios, occasionally dropping to 60%. The major trend in the 

intensity of interactions among the inputs is that the model starts as an additive one and becomes 

more nonlinear later. Based on the total-effect indices, we can also observe that factor 

interactivity introduces some level of stability in the relative significance among inputs (STi of 

AI in experiments 1, 4, and 6). Moreover, the importance of factor interactivity becomes more 
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evident for scenarios that are impacted by the availability of highly scoring opportunities located 

in the neighborhood of already developed sites (scenario 1, 4, and 11).  

Comparing the uncertainly plots of AI with its sensitivity graphs leads to an interesting 

correlation. Whenever the value of AI stabilizes, the input factors become more interdependent. 

This behavior is representative of a dynamic equilibrium at the macro-level (Richiardi, 

Leombruni et al. 2006), in which disparate factor combinations contribute towards ABM 

outcome stability during different time periods. 

When considering the LPDI statistic, the sum of its first order indices changes rather 

haphazardly. Observe that, apart from experiments 2, 3, and 7, the variance of LPDI seems to be 

shaped by the individual factors rather than their combinations, since the sum of first-order 

indices maintains 100% value most of the time. The interaction among inputs (Wlv, Wsb, and Dsb) 

is more evident in experiments with divergent importance assigned to the attribute maps 

(scenarios 2, 3, 7). 

Furthermore, observe that the factor which defines a particular scenario is not necessarily 

the most significant one in shaping the behavior uncertainty of this scenario. For example, 

experiment 7 has a high value assigned to Ilv, and yet the sensitivity for AI of the tested 

uncertainty in this factor is negligible. In fact, the most significant factor here is SS, suggesting 

that the high value of AI in this scenario (Figure 5) is mostly dictated by agents’ access to 

information about development opportunities. This behavior can be easily explained. If the 

average value of a particular input is high, such factor has in consequence an overwhelming 

impact on model outcome dynamics to the point that the ABM becomes insensitive to the 

variability associated with this factor. Therefore, the influence of this factor on model outcomes 

is substantial but steady. This has a profound consequence on the input definition of a given 
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experiment. Strictly speaking, a factor that controls a particular scenario can be essentially set to 

a relatively high fixed value yielding a similar model behavior as the one outlined above.  

Given the time-GSA plots of most AIs and some LPDIs, we can observe that the model 

behaves more nonlinearly after t=30. We hypothesize that the small interaction among factors in 

the first time steps can be explained by spatial path dependence. The initial decisions of agents 

are based on randomly drawn samples of developable locations. Hence, the very first developed 

sites produce the seeds of growth that later glues to the existing patches. Other significant input 

variables are less influential. Not surprisingly then, the first few time steps are dominated by 

variations in SS. The converse also supports the existence of spatial path dependence. With high 

SS in experiment 10, agents become more consistent in their choices of initial developments, 

reducing the role of SS variability in outcome sensitivity. 

Is there anything that can be learned from the homogeneous population? Based on the 

negligible impact of the magnitude of Anum, we postulate that ABMs with multiple homogeneous 

agents can be substituted with the system dynamics approach employing one ‘averaged’ actor. 

Moreover, significant changes in population size (scenarios 8 and 9) increase factor interactivity. 

We hypothesize that this trend would be more pronounced with heterogeneous agents.  

6 Concluding observations 

The aim of this study was to investigate the potential of time dependent variance-based global 

sensitivity analysis in examining the dynamics of outcome uncertainty of a simple agent-based 

model of land use change. To achieve this objective we experimented with different 

configurations of uncertainties of a fixed number of input variables. We summarized output 

uncertainties with descriptive statistics and compared them with time series of first-order and 

total-effect sensitivity indices.  
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We have found that time-GSA allows for exploration of model behavior which would be hard to 

observe using other approaches. The sole analysis of outcome uncertainty, exemplified in 

probability density functions of selected fragmentation statistics, does not reveal the dynamics of 

model sensitivity to various input factors. We would be unable to estimate how uncertainties in 

different factors contribute individually and in interactions towards the stability of ABM 

outcome fragmentation over time. Based on the presented research, we argue that it is difficult to 

assess the nonlinearity of ABM without a thorough sensitivity analysis. ABM has been 

proclaimed to be complex and nonlinear, but little is reported to prove that the internal 

mechanisms of such models behave truly nonlinearly. As Phillips (2003) and Manson (2007) 

point out, not all complexity is nonlinear, and not all nonlinearity is complex. Going one step 

further, we propose different types of ABM nonlinearity: from functional (model definition), 

through factorial (input and output distribution), to behavioral (the nature and magnitude of 

interactions during model execution). As demonstrated here, time-GSA is particularly suitable 

for the latter case. 

We conclude that the factor sensitivity measures vary significantly during model 

execution. Assuming that ABM dynamics is a result of factor interaction, we observe a distinct 

time lag of nonlinearity, which unfolds after the formation of the seeds of development. 

Consequently, a static snapshot of ABM sensitivity, taken at the end of the simulation, is 

inadequate when deciding on factor prioritization and reduction.  

What should be done in the future? Considering that land use ABM is particularly 

suitable for studying the impact of human behavior on landscape configurations, a concurrent 

research project is undertaken to examine the effects of agent heterogeneity on land use 

dynamics. Finally, there is a clear need for better approximation methods of sensitivity indices. 
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As shown in section 5.2, the Monte Carlo technique applied here requires a large number of 

model executions. For empirical ABMs, which require longer computation time, large samples 

of simulations become prohibitive.  
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Table 1 Si and STi interpretation 

Measure Interpretation 

Relatively high Si A factor that is singly influential on the variability of 

model output 

Sum of Si over all inputs Percent of output variability due to the inputs taken 

independently; the remainder (to 100%) is the 

fraction of output variance due to the interactions 

among inputs 

STi – Si  relatively high Input i is highly involved in interactions with other 

factors, all inputs with high difference are involved in 

interactions among each other 

Note that input i can be singly insignificant (low Si), 

but influential when involved in interactions with 

other factors (high STi), i would therefore influence 

the output variance more through interactions than 

individually 

Relatively low value of STi An insignificant factor 

 

 

Table 2 Probability density functions used for seven input factors in eleven ABM experiments: 

N – normal distribution probability density function (mean, std); M – probability mass (discrete) 

function defined with three values: value_low having p=0.25; mean having p=0.5; value_high 

having p=0.25 

 

Id Experiment agent num value weight 
beauty 

weight 
access weight sample size 

decrease 

beauty 

(feedback) 

increase 

value 

(feedback) 

1 Base M(5, 8, 10) N(.33, .165) N(.33, .165) N(.33, .165) N(.165, .0825) N(.05, .02) N(.05, .02) 

2 Land value preference 

dominates 
M(5, 8, 10) N(.66, .165) N(.33, .165) N(.33, .165) N(.165, .0825) N(.05, .02) N(.05, .02) 

3 Natural beauty 

preference dominates 
M(5, 8, 10) N(.33, .165) N(.66, .165) N(.33, .165) N(.165, .0825) N(.05, .02) N(.05, .02) 

4 Low accessibility M(5, 8, 10) N(.33, .165) N(.33, .165) N(.165, .0825) N(.165, .0825) N(.05, .02) N(.05, .02) 

5 High accessibility M(5, 8, 10) N(.33, .165) N(.33, .165) N(.66, .165) N(.165, .0825) N(.05, .02) N(.05, .02) 

6 Feedbacks high-high M(5, 8, 10) N(.33, .165) N(.33, .165) N(.33, .165) N(.165, .0825) N(.08, .02) N(.08, .02) 

7 Feedbacks low-high M(5, 8, 10) N(.33, .165) N(.33, .165) N(.33, .165) N(.165, .0825) N(.005, .002) N(.08, .02) 

8 Agent population large M(40, 20, 10) N(.33, .165) N(.33, .165) N(.33, .165) N(.165, .0825) N(.05, .02) N(.05, .02) 

9 Agent population small M(5, 4, 2) N(.33, .165) N(.33, .165) N(.33, .165) N(.165, .0825) N(.05, .02) N(.05, .02) 

10 Sample size large M(5, 8, 10) N(.33, .165) N(.33, .165) N(.33, .165) N(.66, .165) N(.05, .02) N(.05, .02) 

11 Sample size small M(5, 8, 10) N(.33, .165) N(.33, .165) N(.33, .165) N(.0825, .04125) N(.05, .02) N(.05, .02) 
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Table 3 The maximum errors in sensitivity index estimates (defined as % deviation below zero) 

for the Monte Carlo sample size of 512 runs. The highlighted experiments (2 and 7) have their 

errors calculated for 1024 runs; their previous errors (for 512 runs) are provided in parentheses.  

 

  AI LPDI PD 

Experiment Id   Si STi Si STi Si STi 

1 2.8 0.0 6.1 1.4 3.4 2.7 

2 7.6 (15.2) 1.3 (1.6) 14.5 (28.6) 0.7 (3.1) 3.9 (15.3) 18.3 (34.0) 

3 7.1 1.2 5.8 4.1 5.1 4.4 

4 1.7 0.0 4.3 2.3 5.4 0.5 

5 4.4 0.5 5.0 0.1 3.8 4.7 

6 4.4 1.1 5.2 2.4 3.4 1.4 

7 5.7 (6.5) 5.9 (12.6) 3.0 (7.4) 1.6 (2.3) 14.6 (16.6) 39.5 (83.0) 

8 3.2 1.4 6.1 1.0 3.9 7.1 

9 9.6 0.5 9.1 1.9 7.6 16.8 

10 1.8 0.7 6.6 2.4 5.9 6.0 

11 8.3 0.8 11.8 2.1 5.9 3.2 

 

 

Table 4 ANOVA results for AI and LPDI for selected time steps 

AI: time step 3 

 Df SS MSE F p-value 

Experiments 10 614161    61416   194.07 <0.0001 

Residuals 5621 1778802      316                         

AI: time step 20 

 Df SS MSE F p-value 

Experiments 10   966141    96614   239.12 <0.0001 

Residuals 5621 2271143      404                         

LPDI: time step 3 

 Df SS MSE F p-value 

Experiments 10 504086    50409    68.41 <0.0001 

Residuals 5621 4141926      737                         

LPDI: time step 70 

 Df SS MSE F p-value 

Experiments 10   1486257   148626   128.53 <0.0001 

Residuals 5621 6499626     1156                         
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Figures 

 
Figure 1 Conceptual diagram of the agent-based model of residential development. 

 
Figure 2 Input landscape attribute maps. Darker shades represent higher values. 

 

Figure 3 Mean land development for t=10 and t=70 calculated among all model executions for selected scenarios, 

darker colour indicates higher frequency of development 

 
Figure 4 Time series of the first order sensitivity index of PD fragmentation statistics calculated for Experiment 7 

(Feedbacks: Low Beauty, High Value). 

 
Figure 5 Time dependent uncertainty plots of [a] Aggregation Index, and [b] Largest Patch of Developed area Index. 

 
Figure 6 Largest differences (%) among experiments plotted over time for AI and LPDI stats. 

 
Figure 7 Time-GSA plots for Aggregation Index: [a] Si, [b] STi. 

 
Figure 8 Time-GSA plots for Largest Patch of Developed area Index: [a] Si, [b] STi. 
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