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ABSTRACT 

We employ spatially-explicit uncertainty and sensitivity analysis to examine the robustness of land 

suitability evaluation. We use Monte Carlo simulation to sweep through criteria weight space, where 

weights are expressed using probability distributions. Multiple output suitability maps are generated 

and summarized using: an average suitability map, a standard deviation uncertainty map, and a number 

of sensitivity maps. We demonstrate how these  surfaces help detect critical regions of suitability on the 

example of habitat suitability evaluation for a wetland plant. Areas of high average suitability and low 

uncertainty signify robust suitability sites, whereas high average suitability and high uncertainty 

characterize candidate areas. These candidate areas are potentially suitable but need further 

examination with variance-based sensitivity analysis, in which the variability of land suitability is 

decomposed and attributed to individual criteria weights. The resulting sensitivity maps delineate 

regions of weight dominance, where a particular weight greatly influences the uncertainty of suitability 

scores. 
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1. Introduction 

Multicriteria land suitability evaluation (LSE) is one of the best known application domains of spatial 

multicriteria evaluation – S-MCE (Jankowski, 1995, Carver, 1991, Malczewski, 2006, Pereira and 

Duckstein, 1993, Eastman et al., 1995, Chakhar and Mousseau, 2008, Densham, 1991, Malczewski, 2004, 

Chen and Paydar, 2012, Yu et al., 2011, Chen et al., 2010a). The procedure, aimed at evaluating the 

potential of a given location for a particular land use, involves a set of quantifiable spatial criteria, their 

standardization functions, techniques for expressing preferences regarding the relative importance of 

the criteria, and aggregation rules combining  quantified criterion preferences with standardized 

criterion values into an overall suitability score (Malczewski, 2004, Lodwick et al., 1990). The score is 

then assigned to each land unit and may be used as the bases for land use allocation. The result of the 

procedure is a land suitability map. 

An important step in the S-MCE procedure, and at the same time a source of uncertainty, is the 

articulation of preferences in regard to spatial criteria. The uneven importance of criteria may result 

from policies, established hierarchies, cause-effect relationships, and subjective preferences.  Criteria 

preferences are commonly quantified as a set of weights. There are various techniques of eliciting 

criteria preferences and transforming them into numeric weights (Malczewski 1999). Simple techniques 

such as ranking or rating require merely arranging criteria in a monotonic rank-order and feeding the 

ranks into a formula, which then yields a weight for each criterion. More complex and theoretically 

founded technique called pairwise comparison derives weights from a series of criterion-to-criterion 

comparisons, based on the 1-9 interval scale, and processes the comparison scores using linear algebra 

operations. A different approach to calculating criteria weights is based on examining trade-offs 

between values attained by one criterion versus another. All of these techniques involve judgment and 

are open to cognitive limitations of human information processing, thus contributing to uncertainty 

inherent in any S-MCE procedure. 

Much  progress has been made over the last twenty years in developing methods of multicriteria land 

suitability evaluation, especially in  integrating  GIS with  S-MCE (Pereira and Duckstein, 1993, Joerin et 

al., 2001, Chakhar and Mousseau, 2008, Malczewski, 2006, Jankowski, 1995, Dragan et al., 2003, Larson 

and Sengupta, 2004, Chen et al., 2001). One methodological area of LSE receiving less attention has 

been spatially-explicit, integrated uncertainty and sensitivity analysis (iUSA) as a systematic approach to 

accounting for the inherent uncertainty of the S-MCE  process (Chen et al., 2011, Ligmann-Zielinska and 

Jankowski, 2008, Gómez-Delgado and Bosque-Sendra, 2004, Lilburne and Tarantola, 2009, Crosetto et 

al., 2000, Benke and Pelizaro, 2010).  S-MCE follows Simon's normative model of decision making 

process comprised of three phases: intelligence-design-choice (Simon, 1957). In this model, uncertainty 

and sensitivity analysis is  the core of the final 'choice' stage, where one evaluates decision alternatives 

and recommends one of them  as a decision problem solution. In this context, the uncertainty involved 

in selecting a decision alternative arises from the character of data, ignorance of system drivers, 

diversity of human values, or whimsical preferences to name just a few. Specifically, uncertainty in S-

MCE may be concealed in model inputs including the selection of decision criteria that reflect the 

objective of the analysis, criteria measurement (attribute uncertainty, positional uncertainty, and 

measurement errors), and preferences (weights) associated with the decision criteria. Consequently, 
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models should be thoroughly evaluated to ensure their robustness under a wide range of possible input 

conditions, where robustness is defined as a minimal response of model outcome to changing inputs 

(Ligmann-Zielinska and Jankowski, 2008, Gómez-Delgado and Bosque-Sendra, 2004).  

Conceptually, iUSA in LSE can be defined as a systematic approach to quantifying the variability of 

outcomes of multicriteria evaluation given model input uncertainty (uncertainty analysis - UA), and then 

identifying, which inputs (e.g. decision criteria or criteria weights) are most responsible for this 

variability (sensitivity analysis - SA). A well-structured and thorough uncertainty and sensitivity analysis 

leads to identification of inputs that need more attention (by, for example, better calibration of model 

parameters), and to model simplification by discarding inputs that have little impact on outcome 

uncertainty (Saltelli and Annoni, 2010, Lilburne and Tarantola, 2009, Saltelli et al., 2008). It is also one of 

the required steps in LSE-based adaptive management (Labiosa et al., 2013).   

Several approaches to uncertainty and sensitivity analysis in LSE have been proposed. They involve a 

systematic examination of S-MCE model components by changing the set of criteria, criteria weights, or 

aggregation functions, and rerunning the model for each change in model components and their values  

(Chen et al., 2010b, Ligmann-Zielinska and Jankowski, 2008, Gómez-Delgado and Bosque-Sendra, 2004, 

Chen et al., 2013). Additionally, for highly uncertain criteria, a modeler can introduce error by adding a 

randomly generated uncertainty surface, which is used to produce an alternative model output 

(Krivoruchko and Gotway Crawford, 2005).  These approaches lead to generating several composite 

scores, which can be compared  visually and statistically to assess the uncertainty associated with each 

decision alternative.  

The simplest and the most straight-forward method of uncertainty and sensitivity analysis is to change 

one decision component at a time (while keeping all other factors constant) and observe the resulting 

changes in model output. This approach, called One-Factor-At-A-Time (OAT) (Daniel, 1958), is probably 

the most popular among spatial and other environmental modelers. Chen et al. (2010b) and Chen et al. 

(2013) present examples of OAT to explore the sensitivity of  irrigated cropland suitability to changes in 

criteria weights. Rae at al. (2007) use three variations of base-case inputs (land cover categorization, 

spatial resolution, and surface error) to produce alternate reserve designs. In their habitat suitability 

analysis of an old-forest polypore, Store and Kangas (2001) use different weights for the two major 

decision criteria (vegetation and soil characteristics) to produce three alternative suitability maps and 

demonstrate how changes in importance assigned to habitat characteristics affect the decision to select 

areas of vegetation preservation.  

The popularity of OAT can be attributed to a number of reasons. First, it is a very intuitive approach to 

track shifts in model outcome. An analyst can change a particular input value by some percentage and 

assess whether the change in the output is of similar magnitude. For example, if the changes in 

suitability scores are less than the introduced change in criterion weight, the analyst may assume that 

the model is not very sensitive to this weight (Triantaphyllou and Sánchez, 1997, Malczewski, 1999). 

Second, OAT lends itself well to visual exploratory spatial data analysis, where a decision maker can 

interactively manipulate inputs (such as criteria weights) and instantaneously observe the results (Chen 

et al., 2010b, Chen et al., 2013, Jankowski et al., 2001, Jankowski et al., 1997). Third, due to its simplicity, 
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OAT does not require any prior knowledge about model sensitivity analysis (Chen et al., 2013). Fourth, 

OAT is very efficient computationally as it does not require a large number of model executions. As 

noted by Saltelli and Annoni (2010), however, the OAT approach has some serious limitations. First, 

conventional OAT is commonly performed using an interactive mode, which on the one hand promotes 

exploration, but on the other hand opens the door to arbitrary change of parameter (e.g. criterion 

weight) values. In the context of LSE, it may be hard to decide, which criterion weight to change and by 

what amount. There is no guarantee that the magnitude of value change  accurately reflects the true 

range of impact of this criterion on the outcome variability. Second, OAT does not account for  the 

magnitude of the overall impact of input uncertainty on the resulting model output. Finally, OAT does 

not take into account potential interactions occurring among model components. Specifically, it does 

not provide any quantitative information on the joint contribution of a selected input, interacting with  

other inputs, to the total unconditional output variability. The latter limitation of OAT is particularly 

troubling in spatially heterogeneous problems, where inputs can be spatially autocorrelated or can 

locally co-vary. 

Variance-based global sensitivity analysis (GSA) has been proposed as an alternative to OAT (Homma 

and Saltelli, 1996, Saltelli et al., 1999, Saltelli et al., 2008) . The objective of variance-based GSA is to 

partition the variability of model outcomes and apportion the fractions to inputs in order to obtain 

quantitative measures of input influence on output uncertainty. As a result, two sensitivity indices are 

computed for each input element of the model; a first order index (S) that captures the independent 

contribution of a given input on output variability, and a total effect index (ST) that also accounts for 

interactions among a given input and other inputs. The (S,ST) pair offers a succinct yet comprehensive 

measure of input influence that does not depend on model formulation. Since variance-based sensitivity 

analysis belongs to global methods (Saltelli et al., 2008), it provides means of studying the whole range 

of input conditions rather than the best-guess or ad-hoc selected values, as it happens in the OAT 

approach to sensitivity analysis.  

Variance-based GSA has already been introduced in GIS-based modeling, although it has not yet gained 

a widespread acceptance.  Examples of GIS applications of the variance-based GSA include hydrologic 

modeling aimed at flood forecasting (Crosetto and Tarantola, 2001, Crosetto et al., 2000), planning 

hazardous waste disposal (Gómez-Delgado and Tarantola, 2006), simulating groundwater flow and 

contamination (Lilburne and Tarantola, 2009, Saint-Geours and Lilburne, 2010), modeling land use 

(Ligmann-Zielinska and Jankowski, 2010, Plata-Rocha et al., 2012), and hydro-geological modeling 

(Marrel et al., 2011).  

Regardless of the specific method of sensitivity analysis used, we argue that the most essential 

requirement of a comprehensive uncertainty and sensitivity analysis of the LSE model and its results is 

that it should be performed in a spatially-explicit manner. Given the spatial nature of LSE modeling, 

where spatial input layers directly contribute to generating spatial output suitability maps, the result of 

uncertainty and sensitivity analysis should also be represented in spatial format. The importance of 

spatially-explicit uncertainty and sensitivity analysis in S-MCE was first noted by Herwijnen and Rietveld  

(1999). Tarantola et.al. (2002) used spatially dependent input and variance-based global sensitivity 

analysis to augment environmental decision analysis, but their study  did not account for spatial 
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variability of the sensitivities. Feick and Hall (2004) made the first operational attempt to map weight 

sensitivities (represented as sensitivity indices) within the S-MCE context.  Rinner and Heppleston (2006) 

proposed another method of post-hoc adjustment of suitability maps to account for the effect of spatial 

variability in criteria values. While Gómez-Delgado and Tarantola (2006) used spatially-inexplicit 

variance-based GSA to calculate sensitivity indices of various S-MCE inputs to evaluate the robustness of 

landfill location, Chen et al. (2010b) and Chen et al. (2011) used spatially-explicit OAT to generate 

uncertainty and sensitivity analysis results in the form of alternative suitability or rank maps. Malczewski 

(2011) introduced an explicit method of capturing spatial variability by means of a local multicriteria 

aggregation procedure. Plata-Rocha et al. (2012) applied error surfaces in extended-FAST global SA to 

introduce weight variability across space and to evaluate positional accuracy of criteria used to calculate 

land use suitability. Finally, Ligmann-Zielinska and Jankowski (2012) offered a procedure for adjusting 

criteria preferences based on a proximity relationship.  

This paper contributes to methods of spatially-explicit uncertainty and sensitivity analysis in S-MCE in 

two ways; first, by addressing the problem of high suitability areas burdened by high uncertainty of S-

MCE results, and second, by presenting an approach for identifying specific S-MCE inputs contributing to 

high uncertainty.  The approach is based on the premise that, in problems characterized by  spatial 

heterogeneity of solutions, iUSA should be explicitly preformed for each and every spatial unit that 

comprises the study area. The proposed approach is based on Monte Carlo simulation that, in the 

context of LSE, results in producing multiple suitability surfaces. The aggregate of the surface is then 

obtained by computing the average (mean) suitability surface and the standard deviation surface, which 

provides a measure of uncertainty present in the average suitability surface. The standard deviation 

(uncertainty) surface is then used to calculate multiple sensitivity maps. Consequently, the method 

quantifies and maps the uncertainty of land suitability and the sensitivities of LSE model inputs for every 

spatial unit within the area of interest. The  novelty of the presented approach comes with two maps of 

sensitivity indices for every model input: an S-map and an ST-map.   

The framework and its application are demonstrated in details on the example of a habitat suitability 

study for an endangered herbaceous perennial plant called Wenatchee Mountains Checkermallow 

(Sidalcea oregana var. calva) in Chelan County, Washington, U.S. (Fish and Wildlife Service, 2001).  In 

this case study, the uncertainty of inputs is represented by the variability of criteria weights associated 

with the essential habitat features of the plant. The practical objective of the case study is to delineate 

areas of high habitat suitability in order to maximize the potential area fit for population restoration. 

Given the uncertainty of weights assigned to  habitat suitability criteria, the habitat suitability maps are 

accompanied by mean suitability and standard deviation maps obtained from multiple model 

executions. Subsequently, two different types of regions of interest are derived: regions of high 

suitability and low uncertainty (referred to as robust areas), and regions of high suitability and high 

uncertainty (referred to as candidate areas). Identifying the candidate areas is equally important to 

delineating the robust areas, because all areas of high suitability should be considered in order to 

maximize the total suitable area of future habitat. The identification of uncertainty sources in candidate 

areas is facilitated  by  the S-maps and ST-maps described in details in the next section. 
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The remainder of the paper is subdivided into the following parts. Section two provides the 

mathematical and algorithmic details of the iUSA framework. Section three describes the case study, 

focusing on data selection, geoprocessing, and simulation setup. Section four discusses the results of the 

simulations, first by reporting the outcomes of uncertainty analysis, followed by the description of 

sensitivity analysis results and the interpretation of combined iUSA results. Section five concludes the 

paper by summarizing the research and outlining  future research directions.   

 

2. iUSA Framework 

2.1 Overview 

The method reported herein consists of three stages (Figure 1, top). First, Monte Carlo (MC) simulations 

are executed to sweep through the uncertain input parameter space, where input values are sampled 

from probability density functions (PDFs). Criteria weights usually constitute the most subjective 

component of any multiple criteria decision analysis, significantly affecting its results (Malczewski, 1999, 

Hämäläinen and Salo, 1997). Consequently, in the application presented in section three, the input 

uncertainty is limited to criteria weights, which express preferences regarding the relative importance of 

habitat suitability criteria.  Second, the uncertainty analysis is performed. The MC simulations produce 

multiple output suitability maps, which are summarized by calculating average suitability and 

uncertainty maps represented by the standard deviation of the mean suitability surfaces. Third, 

sensitivity analysis is employed in the form of the model-independent method of output variance 

decomposition, in which the variability of suitability maps is  apportioned to every criterion weight, 

generating one first-order (S) and one total-effect (ST) sensitivity index map per criterion weight. 

2.2 Sampling and Simulation 

The specific algorithmic procedure, presented in Figure 1 (bottom), follows the method proposed in 

Saltelli et. al. (2010), referred to as quasi-random radial sampling. In the first step of radial sampling,  

two independent lists of N weight samples are generated based on predefined PDFs of the k criteria 

weights, referred to as sample lists NA and NB (Saltelli, 2002). Weight samples are produced using the 

quasi-random Sobol' experimental design (Sobol', 1993, Saltelli, 2002), which proved to be the most 

efficient when approximating the values of sensitivity indices (Saltelli et al., 2010). Using the NA and NB 

lists, radial samples are derived to perform a total of R model runs (Saltelli et al., 2010): 

 

 (1) 

 

A radial weight sample is a sample Ab, in which the value of i-th weight a in sample jA  ) 

is substituted with a value b from an equivalent sample in jB ( ). For example, for the weight 

sample: 

 

 
(2) 
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k radial samples Ab are generated in the form: 

 
 

(3) 

As a result, the model produces R suitability maps that are jointly called an R-stack (Figure 1, bottom). 

 

 

 

Figure 1 Procedure for integrated Spatial Uncertainty and Sensitivity Analysis of Suitability Weights (top: 

overview, bottom: detailed workflow). 
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To calculate each suitability surface, this paper employs the Ideal Point (IP) aggregation function (Hwang 

and Yoon 1981, Ligmann-Zielinska and Jankowski 2012). The IP function (Nyerges and Jankowski, 2009, 

Hwang and Yoon, 1981) calculates the final suitability score for every raster pixel (or other spatial unit) 

based on the separation of weighted multicriteria  pixel score  from two  multicriteria reference metrics 

called the ideal point and the nadir, respectively. The ideal point represents a hypothetical pixel 

characterized by the most favorable values for the evaluation criteria considered in a given decision 

situation. The pixel that is closest to the ideal and, at the same time, farthest from the nadir point (i.e. a 

hypothetical pixel characterized by the worst outcomes for the evaluation criteria) is assigned the 

highest suitability score. In particular, assuming k standardized suitability criteria scores for pixel pxy, 

where xy refers to x and y coordinates:  

 
 

(4) 

Calculate weighted standardized criterion scores vxy: 
 

 
 

(5) 

where : 

 
 

(6) 

ai is a weight assigned to criterion i, and  where NR is a total set of R radial weight samples.  

 
Next, identify the ideal (B*): 
 

 
 

(7) 

 
 

 

 

(8) 

where S is the set of all pixels in a given weighted raster k. 

Identify the nadir (W~): 
 

 
 

(9) 

 
 

 

 

(10) 

Next, calculate separation measures (Sep) from B* and W~ for every  

 

 
 

(11) 
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(12) 

The final suitability score (Cxy) for every   is computed as follows:  

 

 
 

(13) 

Since the Cxy values are not affected by dependencies among the evaluation criteria (Hwang and Yoon, 

1981), the IP is an attractive aggregation function for spatial evaluation problems characterized by a 

high likelihood of  dependencies among the input layers.  

2.3 Uncertainty Analysis 

Given that the sample lists (NA or NB) are independent and the use of either of the lists leads to a 

relatively large number of model realizations, it is sufficient to use only one of the lists in order to 

compute a full range of the model response. Consequently, an A-stack of output sensitivity surfaces is 

selected from the R-stack (Figure 1). It consists of suitability maps calculated for all weight vectors in NA. 

The A-stack can be further summarized by calculating (using local map algebra operations) its minimum 

(MIN),  maximum (MAX), average (AVG), and standard deviation (STD) surfaces. At a minimum, the AVG 

and STD surfaces should be used, where STD is the uncertainty surface. This conjoint use of AVG and 

STD is reminiscent of the manner, by which geostatistical methods produce both an interpolated map 

and an associated error map accompanying the interpolated surface (Oliver and Webster, 1990, 

Krivoruchko, 2011, Zhang and Goodchild, 2002).  The method thereby offers the means of accounting 

for and visualizing the spatial distribution of uncertainty for a given suitability map. AVG and STD 

surfaces allow for identification of the critical regions of suitability as presented in Table 1. Of particular 

interest is the quadrant one indicating the robust regions, and the quadrant two indicating the 

candidate regions. 

 

 Low STD High STD 

High AVG (1) High confidence priority regions (2) Low confidence priority regions 

Low AVG (3) High confidence discard regions (4) Low confidence discard regions 

Table 1 Aspects of robust and candidate suitability regions. Robust: quadrant (1), candidate: quadrant (2) 

  

The two extreme value maps of MIN and MAX offer additional information about the stability of 

suitability scores. The MIN map returns the minimum value of surfaces calculated on a cell-by-cell basis, 

revealing regions of repeatedly high values i.e. the highs surface. Specifically, it delineates areas that 

always score high relative to other sites. The MAX map returns the maximum value of layers calculated 

on a cell-by-cell basis. It is referred to as the lows surface because, for a given set of maps, it shows 

areas that always score low relative to other sites. 
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2.4 Sensitivity Analysis 

Following the radial sample procedure (Saltelli et al., 2010) the R-stack is used to derive 2k sensitivity 

maps i.e., k number of S-maps and k number of ST-maps. In the particular context reported in this 

paper, the goal of SA is to find the criterion weights that have the most influence on site suitability. S is 

defined as a fractional, first-order (linear) contribution of a given criterion weight to the variance of the 

suitability scores calculated for a given pixel.  The analyst uses  S to look for influential criterion weights 

that, if fixed independently, would reduce the variance of the suitability the most. This is to say, weights 

with relatively high S values have the most impact on the variability of site suitability. There exists no 

established threshold for the S values. Values for all criterion weights have to be analyzed and their 

importance is determined based on their relative magnitudes (Saltelli et al., 2004). Calculating a 

complement to one of the sum of S values (1 - S) allows for evaluating the interaction effects among 

inputs, which can be further described using the ST indices. ST finds the overall contribution of a given 

weight including its interactions with other weights (hence, indirectly, other suitability criteria).  

 

The spatially-explicit iUSA framework requires the output variance decomposition for every spatial unit 

(e.g. pixel) of the suitability map, producing a separate sensitivity map for every input weight. 

Specifically, variance in suitability scores and the corresponding sensitivity indices are concurrently 

calculated for each and every pixel in the area of interest. For detailed definitions and formulas of the S 

and ST sensitivity indices the reader is referred to Saltelli et al. (2008), Lilburne and Tarantola (2009), 

Crosetto and Tarantola (2001), and Nossent et. al. (2011) among others. 

 

3. Demonstration study  

Habitat suitability analysis can be used as a method in ecosystem management to systematically screen 

land areas for introducing/reintroducing a particular species. The method produces a composite index of 

location suitability. The index demonstrates the usefulness of the site to meet the key life requisites for 

a given species. In this paper, the species of interest is the Wenatchee Mountains Checkermallow  - 

Sidalcea oregana var. calva - referred to as Checkermallow in the following sections (Zimmerman and 

Reichard, 2005, Center for Plant Conservation, 2010). It is an endangered herbaceous perennial found 

only in six site locations in the Wenatchee Mountain range of Chelan County, Washington, U.S. with a 

total estimated population of 3,600 in 2001 (Fish and Wildlife Service, 2001) - Figure 2. Over 6,000 acres 

were designated for this plant as a critical habitat and the largest contiguous area that it is currently 

known to contain the species is the Camas Meadows Natural Area Preserve in Chelan County. Given the 

small size of the population and its scarcity, it is important to identify locations of suitable habitat for 

Checkermallow to promote its persistence and spread. Specifically, the goal of this study is to find the 

maximally suitable locations for Checkermallow communities by generating composite raster habitat 

suitability maps. This information will be useful for prioritizing sites that should be checked in the field 

for the existence of Checkermallow populations (most of the known locations were last checked in the 

late 1990s), and for selecting Checkermallow conservation zones (population hot spots). Essential 

habitat characteristics for the conservation of the species include moist meadows, saturated silt loams 

and clay loam soils especially in spring and early summer, the vicinity of open conifer forests dominated 
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by Ponderosa pine and Douglas-fir, and mid-elevations (488 to 1000 meters). Because this population is 

so small, it is also at risk of extinction from random events, such as wildfires.   

The extent of the study area is 66 square km with elevations ranging from 377 to 1377 meters.  About 

71% of the study area is forested, 10% is shrub land, and only 2% is wetland.  Although there are no 

large water bodies present in the study area, creeks and small rivers are prevalent with a maximum 

distance of 900 m to the nearest stream.   

 

 

Figure 2. Study site; Chelan County, Washington, U.S. Camas Meadows Natural Area Preserve is the area 

of recorded plant communities. Data source: Washington Department of Natural Resources, Rare Plants 

and High Quality Ecosystems. 

 

3.1 Habitat Criteria Selection and Geoprocessing 

Based on the above description of the habitat characteristics suitable for Checkermallow, we used seven 

factors in the suitability analysis. Criteria surface names and the basic metadata are provided in Table 2.  

The extent of the study area was partitioned into raster cells with the resolution of 30m, resulting in 

73170 cells (270 columns, 271 rows).   
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Map name Date Source Description 

WETSOIL(1) 2002 USDA-SSURGO Saturated soils characteristic for wetlands (soils) 

ELEV(1) 2009 USGS-NED Elevation of plant occurrence (topography) 

RADIATION(1) 2009 USGS-NED Exposure to sunlight in spring (climate) 

RAINFALL(1) 1971-2000 PRISM Average annual precipitation (climate) 

DEVDIST(2) 2000, 2012 CCPA and WA-DNR Distance to rural residential development and 

transportation (land use) 

STREAMS(1) 2011 USGS-NHD Density of streams (hydrology) 

CANOPY(1) 2001 USGS-NLCD-TCL Density of coniferous forest (other plan 

communities) 

Table 2 Selected Habitat Criteria. (1) Physical and biological habitat features, (2) Anthropogenic Threats. Sources: 

United States Department of Agriculture Soil Survey Geographic Database (USDA-SSURGO), United States 

Geological Survey National Elevation Dataset (USGS-NED), The PRISM Climate Group at Oregon State University 

(PRISM), Chelan County Planning and Administration Office (CCPA), Washington State Department of Natural 

Resources (WA-DNR), United States Geological Survey National Hydrography Dataset (USGS-NHD), United States 

Geological Survey National Land Cover Database Tree Canopy Layer (USGS-NLCD-TCL). Source data for ELEV, 

RADIATION, and CANOPY all share 30m resolution. The inputs to WETSOIL, STREAMS, and DEVDIST rasters are 

provided in vector format with positional accuracy of approximately 40m. PRISM, the most accurate climate data 

for the region, was downscaled from 4km to 30m (ArcGIS™ Resample Tool). 

 

The soils dataset already includes an attribute that classifies soils based on their suitability for wildlife 

wetland plants requiring saturated soils. Since Checkermallow grows within the range of 488 to 1000 

m.a.s.l., we assume that the midpoint of 744m is the most suitable elevation for the plant, and that all 

values above or below the midpoint diminish in their suitability. The elevation dataset was further used 

to calculate global solar radiation in the spring of 2011 (Watt Hours per sq meter). Using standard focal 

map algebra operations, we smoothed the source precipitation layer to fit the study data resolution of 

30m.  

Although fire hazard was mentioned as one of the major anthropogenic threats, we excluded this layer 

from the analysis due to its lack of variability within the area of interest (over 80% of area is within the 

fire hazard zone). Instead, distance to roads and distance to buildings were jointly used to represent the 

threats to the long-term existence of the plant. We also used stream density to represent the areas 

adjacent to or within the seepage zones. Finally, we calculated the density of forest using the available 

forest canopy land cover data.   

All layers were tested for potential correlation. The  pairwise Pearson correlation coefficient range was:  

-.31 < r < .27 (p < .01). Consequently, we assumed that the decision criteria were not linearly cross-

correlated. 
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3.2 Criteria Standardization and Valuation 

Six out of seven criteria used in the analysis are measured on different measurement scales (criteria six 

and seven in Table 2 are measured on the same density scale). In order to address the problem of 

incommensurate measurement scales, the criteria and their raw values need to be transformed into a 

common scale using a criterion standardization procedure. To maintain proportionality between the raw 

and standardized values, we used the ratio linear transformation for all layers except DEVDIST. Due to 

the nature of this criterion (distance), the score range transformation was used instead (Malczewski, 

1999). Table 3 lists the valuations applied to each criterion. The final input criteria maps are depicted in 

Figure 3. 

 

Name Valuation Justification/Preference is given to: 

WETSOIL B Soils with higher suitability for wetland plants 

ELEV B Sites closer to the midpoint elevations 

RADIATION B More radiated areas 

RAINFALL B Areas with higher precipitation levels 

DEVDIST C It is a threat to the plant that should be avoided   

STREAMS B Areas with higher potential for seepage 

CANOPY B The plant is more common in the vicinity of conifer trees 

Table 3 Criteria Valuation. Benefit (B) where higher value is considered preferable, and Cost (C) where lower value 

is preferable. 

 

 
 Figure 3 Standardized Checkermallow habitat factors used in the suitability analysis 
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3.3 Simulation Setup 

Due to the lack of data on the relative importance of the habitat criteria, we assumed random uniform 

PDFs, with the range [0.0, 1.0] where every element has the same probability of being selected. All 

weights were derived independently from the PDFs, and were further recalculated to add up to 1.0.   

As mentioned in section 2.2., we applied Sobol’s experimental design with N=15360 weight samples 

used in the base runs for UA, resulting in 138 240 radial samples for SA (15360*(7+2)). The large value of 

N was dictated by the approximation error that occurred for lower sample sizes. Each S value should be 

within the 0 to 1 range so that the sum of S is less than or equal to 1. If large negative values for S are 

obtained, N is too small rendering an inadequate approximation. With the N=15360, negative values for 

the S index did not exceed 1.5% of all pixels, resulting in reliable sensitivity maps. 

Given that the study site comprises 73 170 cells, we needed to compute over 10 billion (109) suitability 

scores (one suitability score for each of 138 240 samples of weights computed for each cell). For every 

pixel, we calculated unconditional variance of average score as well as approximated the sensitivity 

indices using the procedure described in section 2. The suitability calculations were run using the 

computing resources in the High Performance Computer Center at Michigan State University 

(http://icer.msu.edu/). 

 

4. Results and Discussion 

4.1 Spatial uncertainty analysis 

The results of MC simulations were summarized by calculating two summary suitability surfaces 

presented in Figure 4 (top). The left map depicts an average habitat suitability surface of 

Checkermallow, computed as the mean of all Monte Carlo runs. The computed suitability scores fall 

within the 11% to 66% interval of the normalized suitability score range (0% - 100%). The areas of high 

suitability follow, in general, the high values of the ELEV criterion (Figure 3, bottom).  For the uniform 

PDFs case this is not surprising, given that these pixels also have relatively high values for all criteria 

except WETSOIL. Consequently, the spatial distribution of high elevation values is accompanied by high 

values of other factors, resulting in a similar spatial pattern of output high habitat suitability. 

If our land suitability analysis were to follow the current practice and the state of art in S-MCE, it would 

stop here. However, the AVG map provides an incomplete depiction of habitat suitability because, as 

seen in Figure 4 right hand-side (the STD surface), some of the high suitability sites are also 

characterized by a relatively high uncertainty associated with spatial distributions of suitability criteria. 

Hence, without the STD surface, the analyst could not have confidence that the high-scoring regions are 

robust, that is, stable under uncertain criteria weight values.  

http://icer.msu.edu/
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Figure 4 Average habitat suitability surface (AVG, top left) with its histogram (bottom left). Uncertainty 

surface (STD, top right) with its histogram (bottom right). 

To further delineate the areas of interest, we assumed that the minimum AVG score for high suitability 

should equal 45% (Figure 4, bottom left). We also assumed that areas with STD over 10% are 

characterized by a relatively high suitability uncertainty (Figure 4, bottom right). As a result, we 

partitioned the surface into four regions (Figure 5 left): robust areas with AVG >= 45% and STD < 10% 

(referred to as High-Low or HL), candidate areas with AVG >= 45% and STD >= 10% (called High-High or 

HH), and two less productive categories of AVG < 45% (with high confidence when STD is less than 10%, 

and lower confidence when STD >= 10%). Observe that 30% of the regions suitable for Checkermallow 

habitat restoration (AVG >= 45%) are accompanied by a relatively high uncertainty due to criteria 

weights (STD >= 10%). Only after analyzing the suitability and uncertainty maps in tandem, we can 
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suggest that 70% of the high suitability areas are robust for Checkermallow restoration (Figure 5). This is 

because the HL regions have values of STD lower than 10%, indicating that the suitability scores in these 

areas do not diverge by more than 10% from their average suitability value of 0.45 or higher. 

Conversely, if we assume that STD >= 10% indicates areas of substantial uncertainty, the HH regions 

have less robust suitability scores. In other words, HH areas are potentially suitable for habitat 

restoration but need further study due to the uncertain  suitability scores. 

Recall that the objective of this study is to maximize the potential area suitable for Checkermallow 

population restoration. In this situation, the decision maker would be not only interested in the robust 

HL regions but also in the candidate HH regions. Four most promising candidate regions are shown in 

Figure 5, right hand-side. To identify which habitat criteria (represented through weights) are behind the 

relatively uncertain high suitability scores for these regions we need to perform sensitivity analysis. 

 

Figure 5 Left: habitat suitability classes (see table 1). Right: selected candidate patches.  

 

4.2 Spatial sensitivity analysis 

UA alone is of limited use if we want to determine the impact of individual criteria on shaping the 

uncertainty of suitability scores. Strictly speaking, the area of robust suitability cannot be increased 

without the identification of criterion weights contributing to the STD map. Specific locations and 

relative dominance of criterion weights influencing the uncertainty of suitability scores can be explored 

with the sensitivity maps, as shown in Figure 6. Since the spatial distribution of S-maps for the 

Checkermallow suitability criteria turned out to be very similar to the distribution of ST-maps, the 
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following interpretation of results focuses only on the S-maps (we explain the relationship between the 

S and ST maps further in section 4.2.1).  

The general pattern of weight sensitivities is spatially heterogeneous.  However, the relationship 

between the input criteria (Figure 3) and their respective sensitivities (Figure 6) is quite complex. Three 

generalized 'input-sensitivity' groups can be identified. CANOPY (Pearson's r = 0.62, p < .01), ELEV (r = 

0.59, p < .01), RADIATION (r = 0.45, p < .01), and RAINFALL (r = 0.44, p < .01) are characterized by 

positive spatial linear correlation, where the distribution of high values of input criteria is matched by 

the distribution of high values of their respective sensitivities. A converse negative correlation between 

inputs and the corresponding sensitivities can be observed for STREAMS (r = -0.54, p < .01). Finally, 

WETSOIL (r = -0.13, p < .01), and DEVDIST (r =- 0.23, p < .01) have a mixed nonlinear relationship 

between the criteria and their S values, with some patches of  high input values and low sensitivities, 

and other locations where high sensitivities correspond to high criteria values.    

When analyzed conjunctively, the S-maps are quantitatively very different. In particular, if weight k  has 

a high S value at a particular cell location, the other weights exhibit lower S values at the same location. 

This is not surprising given that every S-map renders a fractional contribution of a particular k to the 

total unconditional variance of the average suitability map. Hence, for every pixel, we can identify one k 

that has the highest S value, resulting in regions where this weight dominates other criteria weights. 

Hence, regions where Checkermallow occurrence is the most uncertain due to factor k are the regions of 

high S value for k. 

 

 

Figure 6. S-maps (first order sensitivity index maps) for the Checkermallow habitat suitability factors. 
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4.2.1 Maps of dominant sensitivities 

We overlaid the S maps to determine, on a cell-by-cell basis, the criterion that has the maximum S 

sensitivity value. This procedure partitioned the space into regions of dominating weights, referred to as 

the weight dominance map shown in Figure 7 top left. For the entire study area the weights for three 

input criteria: CANOPY, RADIATION, and ELEV explain the vast majority of uncertainty associated with 

high suitability scores.  For the selected candidate patches of higher uncertainty (Figure 7 top right), 

CANOPY and ELEVATION also proved to be the most influential.  The other criteria: RADIATION, 

RAINFALL, and WETSOILS are not present in the weight dominance map of the four patches, suggesting 

that their influence on uncertainty  in these areas is relatively low or even nonexistent.  

Calculating a complement to one of the sum of S values (1 - S) allows for evaluating the interaction 

effects among inputs, which can be further described using the ST indices. Consequently, to obtain a 

map of total interactions, we summed up the S-maps and subtracted the result from a homogenous 

raster with the value of one. A portion of this map is rendered in Figure 7 bottom left. It shows the pixels 

that fall within the candidate HH zone and, at the same time, have interaction effects ranging from 10% 

to 23%. Three observations can be made. First, the HH regions have, in general, a large area of 

interaction effects that are higher than the rest of the study area. Second, when compared with the S 

(non-interaction based) values of all criteria, the interaction effects are relatively low. Accordingly, the 

regions of high uncertainty accompanying high suitability could be explained by individual weights 

alone. Third (and correspondingly), the distribution of dominant ST values is very similar to the 

distribution of dominant S values in the four candidate patches (compare Figure 7 top right with the  

bottom right). Only 5% of the total area of the four patches differs in the dominant S versus the 

dominant ST values. Consequently, the analysis could be confined to the dominant S map. For both 

sensitivity indices, CANOPY is the dominating criterion weight shaping suitability uncertainty for patches 

A, B, and C, whereas ELEVATION prevails over all other criteria for uncertainty in patch D. 
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Figure 7 Top: regions of dominant weight sensitivities (left) and dominant criterion weight sensitivities for the four 

candidate patches (right). Bottom: interaction effects between criteria weights (left) and dominant weights in the 

candidate areas based on the total effect sensitivity indices (right). 

4.3 Discussion 

Quantification of habitat suitability for use in ecosystem management is a high cost endeavor that could 

rarely be done on a large scale. To address this problem, this paper introduces a comprehensive 

approach to suitability analysis resulting in a thorough diagnosis of habitat potential. The application of 

the approach provides information on regions of high suitability, their uncertainty, and the associated 
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factors contributing to this uncertainty. Consequently, our final recommendation for Checkermallow 

habitat restoration is to focus on the high scoring regions depicted in Figure 5 left, which constitute 

about 26% of the study area. These regions of high average suitability can be further subdivided into 

two zones: [1] regions of low uncertainty constituting a stable suitability zone referred to as a robust 

habitat suitability region, and [2] regions of high uncertainty accompanying high suitability, associated 

with the variability of criteria weights. If selected, these regions should be further evaluated especially in 

relation to the weights associated with tree CANOPY and ELEVATION. Information obtained from the S 

and ST-maps (Figure 7) would be useful for further study that could focus on refining the role of the two 

criteria in determining Checkermallow habitat suitability. For tree canopy, a finer attribute resolution 

has a potential to reduce the uncertainty of the candidate regions. For example, the analyst could 

substitute the current CANOPY map with a vegetation map depicting two particular tree species 

associated with Checkermallow occurrence: Ponderosa pine and Douglas-fir. In addition, more accurate 

elucidation of criteria weights, performed by Checkermallow ecology experts, could improve the 

robustness of candidate locations.   

Another practical implication of the S and ST-maps is that they help to uncover the spatial configuration 

of sensitivities.  For example, factor reduction through fixing of the non-influential inputs to constant 

values, which is often performed as a result of variance-based SA, cannot be easily done for spatially 

heterogeneous inputs (Plata-Rocha et al., 2012). As shown in Figure 6, such inputs can render spatially 

variable sensitivities. Only if spatial variability is represented by low S and ST values, can we set a 

particular input to a constant.  Moreover, the SA maps provide general information on  spatial 

distribution of factor sensitivities. The analyst learns about inputs that cause high model outcome 

variability and, in addition, gains insight into the spatial structure of influential model inputs.  

 

4.4 Limitations and future work 

Unlike OAT (Chen et al., 2011, Chen et al., 2010b, Chen et al., 2013) the iUSA discussed herein has a high 

computational cost, which is its obvious limitation. In the demonstration study, we had to resort to 

supercomputing to generate the sensitivity maps. A potential solution to this problem is to employ 

linear regression (Manache and Melching, 2008), metamodeling (Marrel et al., 2011), or screening 

(Makler-Pick et al., 2011).  An unexplored approach to reducing the computational cost is to calculate 

the sensitivity indices for a sample of locations, and derive the SA maps using interpolation instead of 

cell-by-cell S and ST calculations. If the decision maker is less interested in maximizing the area of 

suitable habitat and, instead, would like to focus on other ecological aspects like landscape 

configuration (the shape and connectivity of the suitability regions), the AVG map could be aggregated 

into selected landscape fragmentation statistics (McGarigal and Marks, 1995) and the standard non-

spatial variance-based SA could be employed instead (Gómez-Delgado and Tarantola, 2006, Crosetto 

and Tarantola, 2001, Crosetto et al., 2000, Ligmann-Zielinska and Jankowski, 2010). 

Another potential algorithmic improvement relates to the procedure of building dominant factor maps. 

The method used in section 4.2.1 relies on finding the maximum value among the S and ST indices for 
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each pixel. This approach is inadequate when two or more factors have similar S or ST values. For 

example, if for a given pixel p:  SRADIATION = 0.33, SCANOPY = 0.31, SSTREAMS = 0.32 then, based on the 

maximum value function, RADIATION would be rendered as the S value for p in Figure 7. However, 

CANOPY and STREAMS have S values roughly equal to RADIATION, and this fact should be included in 

the procedure of generating the dominant map. A more sophisticated cartographic algorithm is needed 

to address such cases.   

In the simulated Checkermallow problem, the input variability was limited to criteria weights. Limiting 

the analysis only to uncertainty/sensitivity of weights works well enough  for a demonstration study, but 

it would be too simplistic in real world ecosystem management situations.  Such cases necessitate a 

more comprehensive iUSA where not only criteria weights but also criteria values are represented by 

probability density functions (Plata-Rocha et al., 2012). Lilburne and Tarantola (2009), for example, used 

multiple layers for each input map in their AquiferSim model in order to represent the potential 

variability of criteria values. In the Checkermallow case, a similar approach could be applied to the 

stream density layer, which uses a search distance to calculate the density. The distance could be set to 

different values generating different realizations of the stream density surface. Another  component of 

the land suitability decision situation, introducing a potential uncertainty, is the aggregation function 

(like IP) used to derive the suitability surface. Studies suggest that the impact of function choice on the 

results can be significant (Makropoulos et al., 2008). Hence, the effect of using different aggregation 

functions could be also included in iUSA of habitat (land) suitability.  In addition to analyzing the effect 

of potential variability in criteria values, the application of iUSA presented here could be extended by 

analyzing the effect of change in scale/spatial resolution of criteria values, providing that higher 

resolution data would be available. 

 

5.  Summary 

This paper describes and demonstrates a comprehensive spatially-explicit uncertainty and sensitivity 

analysis approach for multicriteria land suitability evaluation. The proposed framework is based on the 

premise that various decision model factors are inherently uncertain and should be therefore evaluated 

using Monte Carlo simulations, where the variable input space is simultaneously perturbated, 

generating input parameter sets that are used to calculate multiple suitability maps. The results of such 

multiple multicriteria evaluations are summarized by computing: [1] an average suitability surface 

(AVG), [2] a standard deviation uncertainty surface (STD), and [3] a number of sensitivity surfaces.  

As shown in the demonstration study, the AVG and STD maps allow for identification of critical regions 

of land suitability.  Regions of high AVG and low STD signify robust suitability sites, whereas high AVG 

and high STD characterize candidate areas that are potentially suitable but need to be further 

investigated due to a significant level of uncertainty associated with the suitability scores. The latter can 

be explored using spatially-explicit variance-based sensitivity analysis, in which the spatial variability of 

habitat suitability and the associated uncertainty are decomposed and attributed to individual criteria 

weights.  
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Results obtained with the reported method can be valuable for land use manager or wildlife biologist in 

supporting their decision making concerning land use conversions, purchasing decisions, and 

re/introduction of species. The results help to identify highly suitable areas that are burdened by high 

uncertainty and then to investigate which specific factors contribute to the uncertainty. This information 

alone is valuable in helping to decide whether or not highly suitable but uncertain areas should be 

included in specific land use allocations. 
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