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Abstract—Agent-based models have been recognized as 

computational laboratories furnishing spatial scientists with a 

plausible exploratory apparatus for learning about land use 

dynamics through an explicit representation of human 

behavior. At the same time research suggests that the utility of 

agent-based modeling has been hampered by a limited 

understanding of the decision processes involving a wide array 

of stakeholders with different perceptions and preferences. 

Therefore, it is critically important to offer new tools for 

a more comprehensive inspection of uncertainties related to the 

interrelationships between individual choices and land 

development patterns. In this paper, we propose a new 

approach to evaluating agent behavioral uncertainty using 

time dependent variance-based global sensitivity analysis. The 

method produces time series of first order sensitivity indices 

that allocate the variance of development patterning to two 

heterogeneous behavioral features: risk perceptions, quantified 

through attitude utility functions, and land preferences, in the 

form of weights assigned to different decision criteria. We 

experiment with three ABM scenarios that emphasize the 

various decision components. The scenarios utilize a fixed 

number of parameters with changing distributions reflecting 

the behavioral characteristic under consideration. Outcome 

maps for each time step are summarized using the aggregation 

index, which is further employed in sensitivity computation. 

The resulting sensitivity indices are plotted against time to 

track the impact of input conditions on land use compactness. 

The comparisons of the plots reveal varying sensitivity 

trajectories that depend on the modified decision rule. 

Keywords: sensitivity analysis; agent-based model; behavioral 

heterogeneity 

I.  INTRODUCTION 

Dynamic land use systems (LUS) have been recognized 
as one of the major players in global environmental change 
(Liu et al., 2007). The complexity of LUS is often attributed 
to human decision making, which involves a wide array of 
stakeholders with different perceptions, experiences, and 
preferences. Recently, agent-based modeling (ABM) has 
been widely utilized as a tool to study the behavior of land 
use actors and the interactions between human decision 

making and landscape characteristics (Parker et al., 2003, 
Verburg, 2006). 

One of the advantages of ABM for LUS exploration is 
the explicit incorporation of decision making heterogeneity 
in the form of varying preferences, decision rules, and risk 
perceptions. The flexibility of behavioral representations is 
both a benefit and a drawback of ABM, since it introduces 
multidimensional uncertainty into the model, leaving the 
modeler with lots of issues to resolve. Too often ABM 
exploration lacks indicators that clearly depict the dynamics 
of model uncertainty, summarize the relative influence of 
inputs on model outcomes, and allow for identification of 
critical regions in the input and output space. Global 
sensitivity analysis (GSA) has been proposed to address 
these challenges, as a method aiming at systematic 
exploration of the most important drivers that shape the 
dynamics of models of deeply uncertain systems (Lempert et 
al., 2003, Saltelli et al., 2000, Lilburne and Tarantola, 2009). 

Complex LUS are nonlinear by nature and yet little 
attention has been given to the role a well-structured time-
variant GSA can play in ABM corroboration. In this paper, 
we propose to calculate and plot a selected sensitivity index 
for multiple time steps of model execution, in order to assess 
the robustness of land use compactness over space as well as 
time. Specifically, our analysis aims at addressing the 
following research questions: What is the impact of different 
intensities of risk perceptions and landscape preferences on 
ABM outcome compactness stability? Do the sensitivities of 
these decision factors vary during model execution, or are 
they time invariant? We employ a specific method of 
sensitivity analysis called variance-based GSA, which is 
summarized in the next section. 

II. VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS 

OF LAND USE CHANGE 

Sensitivity analysis of an ABM involves sweeping the 
parameter space and executing multiple model simulations 
for different input samples (An et al., 2005, Lilburne and 
Tarantola, 2009). Unlike more traditional, one-at-a-time 
approaches, GSA assumes that the perturbations applied to 



the model involve simultaneous variation of all factors over 
the entire problem space (Saltelli et al., 2000). Various GSA 
approaches have been employed in spatially-explicit 
research. One method, called variance-based GSA, is 
especially promising to evaluate dynamic and nonlinear 
systems, since it is model independent, that is, it does not 
assume any particular structure of the examined model. 
Variance-based GSA decomposes the variance of model 
output, isolating the effects of changes in model inputs, 
which are represented individually and in combinations 
(Saltelli et al., 2008). As a result, we can compute first and 
total order sensitivity indices that quantify both the 
independent and the interactive fractional contribution of a 
given input parameter (i) to the variance of the outputs. In 
this paper, we utilize the first order sensitivity index (Si), to 
evaluate ABM stability under varying input values. Since the 
ABM output is time-dependent, we calculate normalized Si 
for each time step, and then plot the values over time, 
creating a time series of ABM sensitivities, which we refer to 
as time-GSA (Saltelli et al., 1999). 

A. Experimental Procedure 

To explore the sensitivity of the LUS ABM presented 
below, the following steps are performed for every land 
development computational experiment (Lilburne and 
Tarantola, 2009): 

 Randomly generate n Monte Carlo input samples 
based on predefined probability functions using 
a quasi-random Sobol’ experimental design 

 Execute the model n times for t time steps 

 Calculate the aggregation index (AI) of output land 
use patterns with FRAGSTATS (McGarigal and 
Marks, 1995) 

 Use the AI together with the input samples to 
calculate time series of Si for every input i 

III. AGENT-BASED MODEL FORMULATION 

The ABM is composed of five heterogeneous developer 
agents and 5041 developable land cells that form a grid of 71 
rows x 71 columns. A location on the lattice can be either 
undeveloped or developed. Agents make decisions based on 
two spatial decision criteria: land value (LV) and scenic 
beauty (SB) (Fig.1, where darker locations are more 
preferred). Each agent is equipped with three attributes: 
preferences (weights) for LV and SB, and perception of risk.  

 

Figure 1.  Input spatial criteria used in agent decision making 

 

Figure 2.  Attitude Utility Functions used in the ABM experiments (Left – 

Experiment 1 and 3, right – Experiment 2): Re – reckless, Ca – cautious, Po 
– poor, Un – unbiased, Ri – rich. 

Preference for scenic beauty Wsb is calculated as a 
complement to the LV weight Wlv as follows: 

 Wsb = 1 – Wlv (1) 

Based on the previous work by Ligmann-Zielinska 
(2009), this research utilizes a simplified approach to 
representing the perception of risk in the form of attitude 
utility functions (AUFs, Fig.2). These nonlinear AUFs 
reflect the perception of risky decision-making that spans 
over a bipolar continuum from risk seeking (reckless), 
through risk-bearing (rich), risk impartial (unbiased), risk-
avoiding (poor), to risk-averse (cautious). Through these 
functions, the decision criteria scores are reevaluated and 
expressed as positive and negative deviations (gains and 
losses) from the neutral linear criterion-option utility 
relationship. These modified criteria values are then weighed 
(Wsb for SB and Wlv for LV, respectively) and aggregated 
into a composite site score using an extended Ideal Point 
decision rule.  

Simulations (n=1280) are executed for 70 time steps with 
every agent developing 3 cells per step (1050 cells or ~21% 
of land developed at the end of the simulation). For every 
time step, an agent samples 10% of developable sites and 
evaluates them based on an ordered choice of location 
utilities. The agent picks the sites that score highest in the 
resultant ranking. Such an investment plan is then checked 
for potential conflicts among all developers in the model. If a 
competition for a given site arises, a bidding mechanism is 
employed. The agent with the highest rank for a particular 
location wins the site over its competitors, who revisit other 
developable locations in quest for potential investment 
opportunities.  

During the model execution, every new buildup impacts 
the immediate surroundings of the developed cell (Ligmann-
Zielinska and Sun, 2010). Two feedback parameters are 
introduced: increase in land value (Ilv) and decrease in scenic 
beauty (Dsb). In particular, new development has a positive 
impact on land value and a negative impact on scenic beauty. 
The explicit feedbacks are represented as a ratio of change in 
the nearest 3x3 neighborhood of every developed cell. 
Therefore, with every time step passed, every neighbor of a 
newly developed cell increases its LV by a fraction Ilv and 
decreases its SB score by a fraction Dsb. 



TABLE I.  PARAMETER DISTRUBUTIONS FOR ABM EXPERIMENTS. 
AUFS: RE RECKLESS, CA CAUTIOUS, PO POOR, UN UNBIASED, RI RICH; 

D: DISCRETE UNIFORM DISTRIBUTION OF ALL COMBINATIONS OF 

PARAMETER VALUES FOR FIVE AGENTS 

Experiment 
Agent Decision Making Parameters 

AUFs Land Value Weight 

[1] Base D(Re,Ca) D(0.15,0.5,0.85) 

[2] Balanced attitude D(Po,Un,Ri) D(0.15,0.5,0.85) 

[3] Balanced preferences D(Re,Ca) D(0.4,0.5,0.6) 

 

 

IV. EXPERIMENTS 

We start from establishing a base case scenario, which 
represents a point of departure for two successive 
experiments E (Table 1). Note that, for all experiments, Ilv 
and Dsb are drawn uniformly from a range [0.02, 0.06]. 

The objective of E1 is to assess how agents’ AUFs, 
which are either extreme risk averse (cautious) or extreme 
risk taking (reckless), affect the resultant development 
compactness (Fig.1). The agents are not only extremely 
polarized in terms of risk perception, but they also differ 
considerably in the preferences assigned to the two decision 
criteria (for example, one agent uses a 85:15 ratio for the 
LV:SB weights, whereas another agent uses a ratio of 15:85).  

Unlike E1 which employs behaviorally antagonistic 
agents, E2 and E3 focus on more balanced decision making, 
with moderate attitudes towards risk in E2, and less volatile 
preferences for SB and LV in E3. With these modifications 
of agent decision mechanisms, we want to address the 
question of whether heterogeneous yet balanced land use 
behaviors influence the outcome land use aggregation and its 
associated uncertainty (Brown and Robinson, 2006). 

 

V. RESULTS AND DISCUSSION 

We start from summarizing the patterns using AI 
calculated for every time step of every simulation run. Table 
2 shows the results for t=70. Observe a considerable 
variation within scenarios (cv=0.38 for E1 and E2, cv=0.26 
for E3). Moreover, E2 bears a substantial statistical similarity 
to E1. To further test the variability among scenarios, we 
conducted t-tests between E1 and E2 and E1 and E3, 
respectively. We used two tail p-values from the tests. In the 
E1 vs. E2 case, we recorded p=0.74 (α=0.05), indicating that 
there is no statistically significant difference between AI 
values of both scenarios. For the E1 vs. E3 test, we recorded 
p<0.00005 and we can conclude that there are statistically 
significant differences between outcome pattern aggregation 
of these two scenarios. Consequently, we can hypothesize 
that, with all other factors unchanged, less variable 
preferences have more impact on development aggregation 
than the less extreme attitudes to risk. 

 

 

 

TABLE II.  SUMMARY STATISTICS OF AGGREGATION INDEX 

CALCULATED AT THE END OF MODEL EXECUTION 

Experiment Mean Std Min Max 

[1] Base 35.1 13.4 7.9 96.2 

[2] Balanced attitude 34.9 13.5 8.6 88.1 

[3] Balanced preferences 
39.5 10.5 18.1 86.8 

 

A. Development Probability Maps 

As the next step, we calculated for E1 and E3 the mean 
development per cell among all n simulations. Fig.3 renders 
the result maps for the last time step. Although there is 
an observable similarity between the scenarios (with the 
most probable locations developed around the center of the 
landscape) the maps confirm the conclusion derived based 
on the AI statistics (Table 2) stating that E1 results in more 
variable development allocation than E3. The visual analysis 
of the maps strengthens our hypothesis about a substantial 
influence of preferences on development aggregation, when 
measured relative to other input parameters. 

B. Time Dependent Global Sensitivity Analysis 

Using SimLab open source software for uncertainty and 
sensitivity analysis (http://simlab.jrc.ec.europa.eu/), we 
calculated the Si sensitivity measures outlined in section II. 
The results, plotted cumulatively, are depicted in Fig.4. 
Based on the first-order effect, which assumes that the input 
parameters are independent from each other, Wlv and Dsb 
have the largest fractional contribution to the variance of 
land use aggregation. Surprisingly, the least influential are 
the AUFs, which, when taken singly, contribute to output 
variance in at most 5% for the first 3 time steps of E1 and are 
nonexistent afterwards. For E3 AUFs have also a negligible 
influence on AI variance across time. 

The significance of weights and Dsb on AI variability can 
be explained as follows. Observe that the spatial distribution 
within the criteria layers drives the magnitude of 
compactness in the area (Fig.1). Moreover, the intensity of 
the Dsb either substantially strengthens or significantly 
diminishes the patchiness of SB, making the aggregation of 
the development very sensitive to this spatial criterion.  

The sum of all Si tells us about the fraction of outcome 
variability explained independently by the inputs. Analyzing 
the complement of this sum to 1.0 allows us to recognize the 
fraction of outcome variability that cannot be explained by 
single factors but rather by their interactions (white 
background in the Si plots in Fig.4).  

Observe that the variance of AI for E1 can be easily 
explained by factors treated individually. In other words, the 
behavior of the ABM is very linear when the E1 input 
configurations are employed. E3 exhibits a somewhat higher 
interactivity of factors, especially at the beginning of the 
simulation (t<5) and after the first quarter of model 
execution (t>25 and t <35).   

 

http://simlab.jrc.ec.europa.eu/


 

Figure 3.  Mean land development for t=70 calculated among n=1280 

model executions for experiment 1 and experiment 3 

VI. CONCLUSIONS 

Variance-based time-GSA offers an untapped so far 
potential for evaluation of spatial ABM robustness. Very few 
studies have been conducted to date to assess the temporal 
variability of outcome sensitivities of LUS ABMs. Such 
oversight may result in inadequate model evaluation. 
Provided that the sensitivity analysis is undertaken for the 
final results of ABM executions, we can potentially lose the 
dynamics of sensitivities throughout the whole simulation 
run. For example, E3 revealed that for t<20 Dsb is more 
influential than Wlv, whereas after t=30 the ABM becomes 
more sensitive to the uncertainty associated with Wlv (Fig.4). 

 

 

Figure 4.  First order sensitivity index (Si) calculated for the aggregation 
index of land use ABM outcome maps for experiments 1 and 3 

Based on the three scenarios, we can conclude that output 
development aggregation of the presented ABM is much 
more sensitive to agent heterogeneous preferences for 
landscape characteristics than to the disparate attitudes 
towards risk. Furthermore, reducing the amplitude of 
preferences (E3) increases input factor interactivity. 
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